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Abstract

This  dissertation  analyses  the  asymptotic  behaviour  of  the  solution  of

problems  on  periodic  quantum graphs  as  the  period  tends  to  zero.  We

consider  variants  of  periodic  quantum  graphs  with  periodicity  in  one

and  two  directions.  Variants  analysed  include  contrasts  and  stretching,

and the question of existence of spectral gaps is addressed for the case

of a contrasting graph with periodicity in one direction.
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1. Introduction
A quantum graph is a metric graph equipped with an operator that acts as the negative second order derivative

along edges and is accompanied by “appropriate” vertex conditions [E]. A common vertex condition, and the

one we will be using in this dissertation, is that the functions acted on by the operator are continuous at each

vertex (and on the whole graph,  for that  matter),  and the sum of all  their  “outgoing” first  derivatives at  each

vertex is equal to zero. Here “outgoing” derivatives refer to derivatives on edges incident to a vertex, taken in

the directions away from the vertex.

Quantum  graphs  find  applications  mainly  as  simplified  models  in  fields  related  to  mesoscopic  physics  and

nanotechnology, where they are used to model systems such as photonic crystals,  quantum wires, conjugated

molecules, and carbon allotropes related to graphene [B, E, F].

We consider a quantum graph to be periodic if its underlying graph has a repeating geometrical structure with

translational symmetry along one or more axes when embedded in a Euclidean space.

Homogenisation  is  an  asymptotic  method  applied  to  partial  differential  equation  systems  on  domains  that

possess  some  kind  of  inhomogeneous  periodic  “micro-structure”  that  gives  rise  to  rapidly  oscillating  coeffi-

cients. By considering the averaged behaviour of the system over a much larger length scale than the character-

istic  length  of  the  “micro-structure”,  it  allows  us  to  analyse  a  simplified  version  of  the  problem  where  the

periodicity is “smoothed-out”.

In  this  dissertation we will  be  applying homogenisation  to  periodic  quantum graphs,  and analysing the  aver-

aged “macro-scale” behaviour of solutions of a periodic operator problem on them.

2. Problem Statement
We will be analysing the behaviour of a periodic operator problem of the form

ΔΓϵ
u- λu = f

on variants of two types of planar periodic quantum graphs, where ΔΓϵ
 is a Laplacian operator on each graph

Γϵ  with period ϵ.  Here λ ∈ ,  u  is  an unknown vector  in some function space to be defined later,  and f  is  a

given vector in the space L2  of square integrable functions (and, for the problems that require it,  in the space

C2  of  continuous  functions  with  continuous  first  and  second  derivatives).  This  can  be  seen  as  a  simplified

version  of  operators  commonly  used  in  electromagnetism,  solid-state  physics,  and  quantum  mechanics,  and

where analysis of the spectrum and its gaps has led to useful applications such as semiconductors and so-called

“meta-materials”.

We  will  be  using  the  Method  of  Multiple  Scales,  where  we  will  assume  our  unknown  functions  have  two

distinct  behaviours,  one at  a  “short”  scale,  and another  at  a  “long” scale.  We represent  this  by using ansatze

consisting of power series expansions in ϵ of functions of the two variables y (for the “short” scale) and x = ϵy

(for  the  “long”  scale),  where  we  will  treat  the  variables  as  if  they  were  effectively  independent.  The  scaling

parameter ϵ is to be considered a small parameter such that  0 < ϵ << 1 . We will also assume that some of the

unknown functions, as well as their first derivatives, are periodic in the “short” scale on unit-cells to be defined

for each problem type. Based on this, we will look for the homogenised behaviour of the unknown functions

on the “long” scale, which will be our main objective.
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In order to simplify calculations, instead of working directly on Γϵ  we will be working on re-scaled graphs Γ

with period 1. The price to pay for this approach is the appearance of large coefficients in front of the differen-

tial operator after re-scaling.

3. Homogenisation of Quantum Graphs Exhibiting Periodicity 
in One Direction

In this section we will analyse the behaviour of our periodic operator on a thin, infinite-length planar “ladder”

quantum graph which presents periodicity in the infinite length direction when embedded in the plane (y1, y2)

and aligned to its coordinate basis, as illustrated in figure 3.1:

y2

0

h

-3 -2 -1 1 2 3 y1

u(y1)

w(y1)

vn(y2) = v(y1,y2) y1=n∈ℤ

Figure 3.1: Close-up of the quantum graph embedded in the plane, displaying the six “horizontal”-periodicity cells 
closest to the origin

The graph has height h = γ for the “simple” and “contrasting” cases, and h =
γ

ϵ
 for the “stretched” case, for

positive γ of O(1).

We define unknown functions u(y1) and w(y1) in the Sobolev space H1() acting on the “horizontal” paths at

y2 = 0   and   y2 = γ   respectively,  and  a  family  of  unknown  functions  vn(y2)  in  H1(0, h)  acting  on  each

“vertical”  edge  at   y1 = n ∈ ℤ  .  We  define  f0(ϵy1)  and  f1(ϵy1)  as  known  functions  in  L2()  acting  on  the

“horizontal” paths at  y2 = 0  and  y2 = h  respectively. In this context, our periodic operator takes the form:

αvn '' (y2) - λvn (y2) = 0 , n ∈ ℤ , y2 ∈ (0, h) (E1)

ϵ-2 u '' (y1) - λu (y1) = f0(ϵy1) , y1 ∈ \ℤ (E2)

ϵ-2 w '' (y1) - λw (y1) = f1(ϵy1) , y1 ∈ \ℤ (E3)

where α = ϵ-2   for  the “simple” and “stretched” cases,  and α = 1 for the “contrasting” case.  These terms

appear as coefficients of the periodic operator because of the rescaling of the graph.

Since the unknown functions on the graph must be continuous at any vertex, we have the following continuity

conditions:

u(n) = vn(0) , ∀ n ∈ ℤ (C1)

w(n) = vn(h) , ∀ n ∈ ℤ (C2)

As the sum of the appropriately scaled outgoing derivatives of the unknown functions on each vertex must be

0, we have the following derivative sum conditions:

lim
σ→0

ϵ-2 u ' (n+σ) - ϵ-2 u ' (n-σ) + αvn ' (σ) = 0 (D1)

lim
σ→0

ϵ-2 w ' (n+σ) - ϵ-2 w ' (n-σ) - αvn ' (h-σ) = 0 (D2)
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Existence and Uniqueness

Existence and uniqueness of the unknown functions can be established by means of the Lax-Milgram Theorem

for λ > 0. We consider a Hilbert space 

V = u ∈ H1(), w ∈ H1(), vn ∈ H1(0, h) : 
n

vnH1
2 < +∞ , vn(0) = u(n), vn(h) = w(n), n ∈ ℤ

with the norm defined by

UV
2 = uH1

2 + wH1
2 +

n

vnH1
2

and noting that the conditions on the derivatives are not included in the definition of V since they are automati-

cally satisfied by the solution of the variational problem.

We define the following sesquilinear form based on the left hand side of the weak formulation of the above

system of equations:

aU, U

 = a(u, w, vn, u

 , w
 , vn


)

= ϵ-2
-∞

∞

u ' u
 ' ⅆy1 +

-∞

∞

w ' w
 ' ⅆy1+

+α 
n∈ℤ


-∞

∞

vn ' vn
 ' ⅆy2 + λ 

-∞

∞

u u

ⅆy1 +

-∞

∞

w w

ⅆy1 + 

n∈ℤ


0

h

vn vn


ⅆy2

for all test functions u , w
 , vn


∈ V. This form is continuous since

aU, U

 ≤ ϵ-2

-∞

∞

(u ')2 ⅆy1

1

2


-∞

∞

(u
 ')2 ⅆy1

1

2
+

+ϵ-2
-∞

∞

(w ')2 ⅆy1

1

2


-∞

∞

(w
 ')2 ⅆy1

1

2
+ α 

n∈ℤ


-∞

∞

(vn ')2 ⅆy2

1

2


-∞

∞

(vn
 ')2 ⅆy2

1

2
+

+λ
-∞

∞

u2 ⅆy1

1

2


-∞

∞

u
2 ⅆy1

1

2
+ λ

-∞

∞

w2 ⅆy1

1

2


-∞

∞

w
 2 ⅆy1

1

2
+

+λ 
n∈ℤ


-∞

∞

vn
2 ⅆy2

1

2


-∞

∞

vn
 2 ⅆy2

1

2

≤ max ϵ-2, α, λ UV
2 U


V

2

and it’s coercive for  λ > 0  since

aU


, U

 = ϵ-2

-∞

∞

(u
 ')2 ⅆy1 +

-∞

∞

(w
 ')2 ⅆy1+

+α 
n∈ℤ


-∞

∞

(vn
 ')2 ⅆy2 + λ 

-∞

∞

(u

)2 ⅆy1 +

-∞

∞

(w

)2 ⅆy1 + 

n∈ℤ


0

h

(vn

)2 ⅆy2

≥ min ϵ-2, α, λ U

V

2

Thus by the Lax-Milgram Theorem, there exists a unique vector  (u, w, vn)  in V such that

a(u, w, vn, u
 , w

 , vn

) = -

-∞

∞

f0 u

ⅆx1 -

-∞

∞

f1 w

ⅆx1, ∀ (u

 , w
 , vn


) ∈ V

which is the weak formulation of the aforementioned system of equations.
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3.1. Homogenisation of a “Simple Ladder” Periodic Quantum Graph
This is the “simple” case where the height  h = γ  and  α = ϵ-2 . Thus our system of equations looks like this

ϵ-2 vn '' (y2) - λvn (y2) = 0 , n ∈ ℤ , y2 ∈ (0, γ) (E1)

ϵ-2 u '' (y1) - λu (y1) = f0(ϵy1) , y1 ∈ \ℤ (E2)

ϵ-2 w '' (y1) - λw (y1) = f1(ϵy1) , y1 ∈ \ℤ (E3)

From the quantum graph continuity condition at each vertex we get the following condition equations:

u(n) = vn(0) , ∀ n ∈ ℤ (C1)

w(n) = vn(γ) , ∀ n ∈ ℤ (C2)

From  the  quantum  graph  condition  of  the  sum  of  all  outgoing  first  derivatives  being  equal  to  zero  at  each

vertex we get the following condition equations:

lim
σ→0

u ' (n+σ) - u ' (n-σ) + vn ' (σ) = 0 (D1)

lim
σ→0

w ' (n+σ) -w ' (n-σ) - vn ' (γ-σ) = 0 (D2)

Per the Method of Multiple Scales,  we assign to each unknown function a two-scale ansatz as follows:

vn(y2) = v0(x1, y2) + ϵv1(x1, y2) + ϵ2v2(x1, y2) +Oϵ3
x1 = ϵn

u(y1) = u0(x1) + ϵu1(x1, y1) + ϵ2 u2(x1, y1) +Oϵ3
x1 = ϵy1

w(y1) = w0(x1) + ϵw1(x1, y1) + ϵ2 w2(x1, y1) +Oϵ3
x1 = ϵy1

Their first derivatives become:

vn ' (y2) = 
∂v0

∂y2

(x1, y2) + ϵ
∂v1

∂y2

(x1, y2) + ϵ2
∂v2

∂y2

(x1, y2) +Oϵ3
x1 = ϵn

u ' (y1) = ϵ
∂u0

∂x1

(x1) +
∂u1

∂y1

(x1, y1) + ϵ2
∂u1

∂x1

(x1, y1) +
∂u2

∂y1

(x1, y1) +Oϵ3
x1 = ϵy1

w ' (y1) = ϵ
∂w0

∂x1

(x1) +
∂w1

∂y1

(x1, y1) + ϵ2
∂w1

∂x1

(x1, y1) +
∂w2

∂y1

(x1, y1) +Oϵ3
x1 = ϵy1

and their second derivatives become:

vn '' (y2) = 
∂2 v0

∂y2
2
(x1, y2) + ϵ

∂2 v1

∂y2
2
(x1, y2) + ϵ2

∂2 v2

∂y2
2
(x1, y2) +Oϵ3

x1 = ϵn

u '' (y1) = ϵ
∂2 u1

∂y1
2
(x1, y1) + ϵ2

∂2 u0

∂x1
2
(x1) + 2

∂2 u1

∂x1 ∂y1

(x1, y1) +
∂2 u2

∂y1
2
(x1, y1) +Oϵ3

x1 = ϵy1

w '' (y1) = ϵ
∂2 w1

∂y1
2
(x1, y1) + ϵ2

∂2 w0

∂x1
2
(x1) + 2

∂2 w1

∂x1 ∂y1

(x1, y1) +
∂2 w2

∂y1
2
(x1, y1) +Oϵ3

x1 = ϵy1

We will assume that functions um, wm (for m = 1,2,...), as well as their first derivatives, are 1-periodic in y1.
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We substitute the ansatze into equations (E1) through (E3) and consider independently the terms correspond-

ing to each order of ϵ. At order ϵ-2 we get:

∂2 v0

∂y2
2
(x1, y2) = 0 (E1,-2)

At order ϵ-1 we get:

∂2 v1

∂y2
2
(x1, y2) = 0 (E1,-1)

∂2 u1

∂y1
2
(x1, y1) = 0 (E2,-1)

∂2 w1

∂y1
2
(x1, y1) = 0 (E3,-1)

At order ϵ0 we get:

∂2 v2

∂y2
2
(x1, y2) - λv0(x1, y2) = 0 (E1,0)

∂2 u0

∂x1
2
(x1) + 2

∂2 u1

∂x1 ∂y1

(x1, y1) +
∂2 u2

∂y1
2
(x1, y1) - λu0(x1) = f0(x1) (E2,0)

∂2 w0

∂x1
2
(x1) + 2

∂2 w1

∂x1 ∂y1

(x1, y1) +
∂2 w2

∂y1
2
(x1, y1) - λw0(x1) = f1(x1) (E3,0)

We do the same for condition equations (C1), (C2), (D1), and (D2), noting that for any function argument we

can take  ϵn = x1   since ϵn can take any value in . Also, by periodicity on the unit-cell we can take n = 0 on

any periodic function of y1 evaluated at n. Thus, at order ϵ0 we get:

u0(x1) = v0(x1, 0) (C1,0)

w0(x1) = v0(x1, γ) (C2,0)

∂v0

∂y2

(x1, 0) = 0 (D1,0)

∂v0

∂y2

(x1, γ) = 0 (D2,0)

At order ϵ1 we get:

u1(x1, 0) = v1(x1, 0) (C1,1)

w1(x1, 0) = v1(x1, γ) (C2,1)

lim
σ→0

∂u0

∂x1

(x1) +
∂u1

∂y1

(x1, σ) -
∂u0

∂x1

(x1) -
∂u1

∂y1

(x1, -σ) +
∂v1

∂y2

(x1, σ) = 0 (D1,1)

lim
σ→0

∂w0

∂x1

(x1) +
∂w1

∂y1

(x1, σ) -
∂w0

∂x1

(x1) -
∂w1

∂y1

(x1, -σ) -
∂v1

∂y2

(x1, γ-σ) = 0 (D2,1)
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At order ϵ2 we get:

u2(x1, 0) = v2(x1, 0) (C1,2)

w2(x1, 0) = v2(x1, γ) (C2,2)

lim
σ→0

∂u1

∂x1

(x1, σ) +
∂u2

∂y1

(x1, σ) -
∂u1

∂x1

(x1, -σ) -
∂u2

∂y1

(x1, -σ) +
∂v2

∂y2

(x1, σ) = 0 (D1,2)

lim
σ→0

∂w1

∂x1

(x1, σ) +
∂w2

∂y1

(x1, σ) -
∂w1

∂x1

(x1, -σ) -
∂w2

∂y1

(x1, -σ) -
∂v2

∂y2

(x1, γ-σ) = 0 (D2,2)

Determination of v0

From equations (E1,-2) and (D1,0) we find that v0  is only a function of x1, and using equations (C1,0) and

(C2,0) we get

v0(x1, y2) = w0(x1) = u0(x1)

Determination of v1

From equation (E2,-1) we know that on the interval  - 1
2

, 1
2
 , u1 should have the form

u1(x1, y1) =
α1
-(x1)y1 + β1

-(x1) , - 1
2

≤ y1 < 0

α1
+(x1)y1 + β1

+(x1) , 0 < y1 ≤
1
2

where α1
-, α1

+, β1
-, β1

+  are all functions of x1. Testing at the limit  y1 = 0  and by continuity, functions β1
-  and

β1
+ must be equal. Using this fact and periodicity on y1 we have

u1 x1, -
1

2
= u1 x1,

1

2

⇒ -
1

2
α1
-(x1) + β1

-(x1) =
1

2
α1
+(x1) + β1

+(x1)

⇒ -α1
-(x1) = α1

+(x1)

and evaluating the partial derivative with respect to y1 at the same points we have

∂u1

∂y1

x1, -
1

2
=

∂u1

∂y1

x1,
1

2

⇒ α1
-(x1) = α1

+(x1)

which  combined  with  the  previous  result  shows  that  u1  is  just  a  function  of  x1.  The  exact  same  argument

applied to equation (E3,-1) proves that w1 is also just a function of x1. Then equations (D1,1) and (D2,1) give

∂v1

∂y2

(x1, 0) =
∂v1

∂y2

(x1, γ) = 0

and with equations (E1,-1), (C1,1), and (C2,1) we find that

v1(x1, y2) = w1(x1) = u1(x1)
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Homogenisation

Now from equation (E1,0) and our result for v0 we know that

∂2 v2

∂y2
2
(x1, y2) = λu0(x1)

and applying our results for v0 and v1, equations (E2,0) and (E3,0) can be rewritten as

∂2 u2

∂y1
2
(x1, y1) = f0(x1) -

∂2 u0

∂x1
2
(x1) + λu0(x1)

∂2 w2

∂y1
2
(x1, y1) = f1(x1) -

∂2 u0

∂x1
2
(x1) + λu0(x1)

Integrating  these  three  equations  on  a  representative  unit  cell,  for  example  on  y2  on  the  open  interval  (0, γ),

and y1 on - 1
2

, 0 ⋃ 0, 1
2
, and taking their sum we have

lim
σ→0

∂v2

∂y2

(x1, σ) -
∂v2

∂y2

(x1, γ-σ) +
∂u2

∂y1

(x1, -σ) -
∂u2

∂y1

x1, -
1

2
+

∂u2

∂y1

x1,
1

2
+

-
∂u2

∂y1

(x1, σ) +
∂w2

∂y1

(x1, -σ) -
∂w2

∂y1

x1, -
1

2
+

∂w2

∂y1

x1,
1

2
-

∂w2

∂y1

(x1, σ)

= 
0

γ

λu0(x1) ⅆy2 +
-1/2

1/2

f0(x1) -
∂2 u0

∂x1
2
(x1) + λu0(x1) ⅆy1 +

+
-1/2

1/2

f1(x1) -
∂2 u0

∂x1
2
(x1) + λu0(x1) ⅆy1

where from applying our result for v1  to equations (D1,2) and (D2,2), and using the periodicity conditions on
∂u2

∂y1
, ∂w2

∂y1
, ∂u1

∂y1
, and ∂w1

∂y1
, the left hand side cancels out and becomes 0, and the right hand side after rearranging

gives the single homogenised equation:

2
d2 u0

dx1
2
(x1) - (2+ γ) λu0(x1) = f0(x1) + f1(x1)

3.2. Homogenisation of a “Vertically-Stretched Ladder” Periodic 
Quantum Graph

This can be considered a modification of the “simple” case, equivalent to stretching the graph vertically by an

order  of  magnitude of  ϵ-1,  giving us  a  system that  after  scaling converges  geometrically  to  a  2D strip  in  the

“long”  scale,  as  opposed  to  the  “simple  ladder”  which  converges  to  a  line.  Here  the  height   h =
γ

ϵ
  and

α = ϵ-2. Thus our system of equations now looks like this:

ϵ-2 vn '' (y2) - λvn (y2) = 0 , n ∈ ℤ , y2 ∈ 0,
γ

ϵ
 (E1)

ϵ-2 u '' (y1) - λu (y1) = f0(ϵy1) , y1 ∈ \ℤ (E2)

ϵ-2 w '' (y1) - λw (y1) = f1(ϵy1) , y1 ∈ \ℤ (E3)
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and our continuity and outgoing derivative sum conditions become:

u(n) = vn(0) , ∀ n ∈ ℤ (C1)

w(n) = vn
γ

ϵ
 , ∀ n ∈ ℤ (C2)

lim
σ→0

u ' (n+σ) - u ' (n-σ) + vn ' (ϵσ) = 0 (D1)

lim
σ→0

w ' (n+σ) -w ' (n-σ) - vn ' (γ- ϵσ) = 0 (D2)

Since we effectively altered the scale of the domain of vn(y2), we adjust its ansatz to reflect its new scale:

vn(y2) = v0(x1, x2) + ϵv1(x1, x2) + ϵ2v2(x1, x2) +Oϵ3
x1 = ϵn, x2 = ϵy2

and its derivatives are now

vn ' (y2) = ϵ
∂v0

∂x2

(x1, x2) + ϵ2
∂v1

∂x2

(x1, x2) +Oϵ3
x1 = ϵn, x2 = ϵy2

vn '' (y2) = ϵ2
∂2 v0

∂x2
2
(x1, x2) +Oϵ3

x1 = ϵn, x2 = ϵy2

The other unknown function ansatze and their derivatives stay the same as in the “simple” case, i.e.

u(y1) = u0(x1) + ϵu1(x1, y1) + ϵ2 u2(x1, y1) +Oϵ3
x1 = ϵy1

u ' (y1) = ϵ
∂u0

∂x1

(x1) +
∂u1

∂y1

(x1, y1) + ϵ2
∂u1

∂x1

(x1, y1) +
∂u2

∂y1

(x1, y1) +Oϵ3
x1 = ϵy1

u '' (y1) = ϵ
∂2 u1

∂y1
2
(x1, y1) + ϵ2

∂2 u0

∂x1
2
(x1) + 2

∂2 u1

∂x1 ∂y1

(x1, y1) +
∂2 u2

∂y1
2
(x1, y1) +Oϵ3

x1 = ϵy1

w(y1) = w0(x1) + ϵw1(x1, y1) + ϵ2 w2(x1, y1) +Oϵ3
x1 = ϵy1

w ' (y1) = ϵ
∂w0

∂x1

(x1) +
∂w1

∂y1

(x1, y1) + ϵ2
∂w1

∂x1

(x1, y1) +
∂w2

∂y1

(x1, y1) +Oϵ3
x1 = ϵy1

w '' (y1) = ϵ
∂2 w1

∂y1
2
(x1, y1) + ϵ2

∂2 w0

∂x1
2
(x1) + 2

∂2 w1

∂x1 ∂y1

(x1, y1) +
∂2 w2

∂y1
2
(x1, y1) +Oϵ3

x1 = ϵy1

We will again assume that functions um, wm (for m = 1,2,...), as well as their first derivatives, are 1-periodic in

y1.

We substitute the ansatze into equations (E1) through (E3) and consider independently the terms correspond-

ing to each order of ϵ. At order ϵ-1 we get:

∂2 u1

∂y1
2
(x1, y1) = 0 (E2,-1)

∂2 w1

∂y1
2
(x1, y1) = 0 (E3,-1)
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At order ϵ0 we get:

∂2 v0

∂x2
2
(x1, x2) - λv0(x1, y2) = 0 (E1,0)

∂2 u0

∂x1
2
(x1) + 2

∂2 u1

∂x1 ∂y1

(x1, y1) +
∂2 u2

∂y1
2
(x1, y1) - λu0(x1) = f0(x1) (E2,0)

∂2 w0

∂x1
2
(x1) + 2

∂2 w1

∂x1 ∂y1

(x1, y1) +
∂2 w2

∂y1
2
(x1, y1) - λw0(x1) = f1(x1) (E3,0)

At order ϵ1 we only need equation (E1) for our purpose:

∂2 v1

∂x2
2
(x1, x2) - λv1(x1, y2) = 0 (E1,1)

Doing the same for the condition equations (C1), (C2), (D1), and (D2), with the same considerations for taking

ϵn = x1 and n = 0  as in the “simple” case, we get at order ϵ0:

u0(x1) = v0(x1, 0) (C1,0)

w0(x1) = v0(x1, γ) (C2,0)

At order ϵ1 we get:

u1(x1, 0) = v1(x1, 0) (C1,1)

w1(x1, 0) = v1(x1, γ) (C2,1)

lim
σ→0

∂u0

∂x1

(x1) +
∂u1

∂y1

(x1, σ) -
∂u0

∂x1

(x1) -
∂u1

∂y1

(x1, -σ) +
∂v0

∂x2

(x1, ϵσ) = 0 (D1,1)

lim
σ→0

∂w0

∂x1

(x1) +
∂w1

∂y1

(x1, σ) -
∂w0

∂x1

(x1) -
∂w1

∂y1

(x1, -σ) -
∂v0

∂x2

(x1, γ- ϵσ) = 0 (D2,1)

At order ϵ2 we get:

u2(x1, 0) = v2(x1, 0) (C1,2)

w2(x1, 0) = v2(x1, γ) (C2,2)

lim
σ→0

∂u1

∂x1

(x1, σ) +
∂u2

∂y1

(x1, σ) -
∂u1

∂x1

(x1, -σ) -
∂u2

∂y1

(x1, -σ) +
∂v1

∂x2

(x1, ϵσ) = 0 (D1,2)

lim
σ→0

∂w1

∂x1

(x1, σ) +
∂w2

∂y1

(x1, σ) -
∂w1

∂x1

(x1, -σ) -
∂w2

∂y1

(x1, -σ) -
∂v1

∂x2

(x1, γ- ϵσ) = 0 (D2,2)

Determination of v0

From equation (E1,0), taking λ > 0 we have:

v0(x1, x2) = α0(x1) e λ x2 + α1(x1) e- λ x2

for unknown functions α0 and α1 of x1.

10 | Homogenisation of Periodic Quantum Graphs



Using equations (C1,0) and (C2,0) we then get the system

u0(x1) = v0(x1, 0) = α0(x1) + α1(x1)

w0(x1) = v0(x1, γ) = α0(x1) e λ γ + α1(x1) e- λ γ

and solving for α0 and α1 we get

α0(x1) =
1

2
csch λ γ w0(x1) - e- λ γ u0(x1)

α1(x1) =
1

2
csch λ γ e λ γ u0(x1) -w0(x1)

(where csch(x) = 1
sinh(x)

 ) and thus v0 becomes

v0(x1, x2) =
1

2
csch λ γ w0(x1) - e- λ γ u0(x1) e λ x2 +

+
1

2
csch λ γ e λ γ u0(x1) -w0(x1) e- λ x2

and its first partial derivative with respect to x2 becomes

∂v0

∂x2

(x1, x2) = λ
1

2
csch λ γ w0(x1) - e- λ γ u0(x1) e λ x2 +

- λ
1

2
csch λ γ e λ γ u0(x1) -w0(x1) e- λ x2

Now using the same logic as in the “simple” case, equations (E2,-1) and (E3,-1) imply u1(x1, y1) and w1(x1, y1)

are functions of x1 only. Thus equation (D1,1) gives

∂v0

∂x2

(x1, 0) = λ
1

2
csch λ γ w0(x1) - e- λ γ u0(x1)+

- λ
1

2
csch λ γ e λ γ u0(x1) -w0(x1) = 0

⇒ w0(x1) = cosh  λ γ u0(x1)

and applying this to equation (D2,1), we get

∂v0

∂x2

(x1, γ) = λ
1

2
csch λ γ cosh  λ γ u0(x1) - e- λ γ u0(x1) e λ γ +

- λ
1

2
csch λ γ e λ γ u0(x1) - cosh  λ γ u0(x1) e- λ γ = 0

⇒ cosh  λ γ u0(x1) - e- λ γ u0(x1)- e λ γ u0(x1) - cosh  λ γ u0(x1) = 0

⇒ cosh  λ γ u0(x1) - e- λ γ u0(x1) = 0

⇒ sinh λ γ u0(x1) = 0

This implies that u0(x1) must be 0 as long as λ ≠ -γ-2 π2 m2 : m ∈ ℤ. As γ > 0, it could act as a tuning parame-

ter in a hypothetical  physical  system with λ < 0 displaying this behaviour,  allowing to adjust  the values of λ

where these changes in the behaviour of the system would occur.  We will  not be considering such a system,

though it might warrant further research.
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Assuming λ is such that  u0(x1) = 0 , this implies that

v0(x1, x2) = w0(x1) = u0(x1) = 0

Determination of v1

From equation (E1,1), assuming again λ > 0 and for unknown functions α2 and α3 of x1, we get

v1(x1, x2) = α2(x1) e λ x2 + α3(x1) e- λ x2

and using equations (C1,1) and (C2,1) we then get the system

u1(x1) = v1(x1, 0) = α2(x1) + α3(x1)

w1(x1) = v1(x1, γ) = α2(x1) e λ γ + α3(x1) e- λ γ

and solving for α2 and α3 we get

α2(x1) =
1

2
csch λ γ w1(x1) - e- λ γ u1(x1)

α3(x1) =
1

2
csch λ γ e λ γ u1(x1) -w1(x1)

and thus v1 becomes

v1(x1, x2) =
1

2
csch λ γ w1(x1) - e- λ γ u1(x1) e λ x2 +

+
1

2
csch λ γ e λ γ u1(x1) -w1(x1) e- λ x2

and its first partial derivative with respect to x2 becomes

∂v1

∂x2

(x1, x2) = λ
1

2
csch λ γ w1(x1) - e- λ γ u1(x1) e λ x2 +

- λ
1

2
csch λ γ e λ γ u1(x1) -w1(x1) e- λ x2

Homogenisation

Applying those previous results to equations (E2,0) and (E3,0), we have

∂2 u2

∂y1
2
(x1, y1) = f0(x1)

∂2 w2

∂y1
2
(x1, y1) = f1(x1)

Integrating these two equations on a representative unit cell with respect to y1 on - 1
2

, 0 ⋃ 0, 1
2
, we have

lim
σ→0

∂u2

∂y1

(x1, -σ) -
∂u2

∂y1

x1, -
1

2
+

∂u2

∂y1

x1,
1

2
-

∂u2

∂y1

(x1, σ) = 
-1/2

1/2

( f0(x1)) ⅆy1 = f0(x1)

lim
σ→0

∂w2

∂y1

(x1, -σ) -
∂w2

∂y1

x1, -
1

2
+

∂w2

∂y1

x1,
1

2
-

∂w2

∂y1

(x1, σ) = 
-1/2

1/2

( f1(x1)) ⅆy1 = f1(x1)
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Eliminating the terms that cancel out by periodicity, and using equations (D1,2) and (D2,2), we get

lim
σ→0

∂u1

∂x1

(x1, σ) -
∂u1

∂x1

(x1, -σ) +
∂v1

∂x2

(x1, ϵσ) = f0(x1)

lim
σ→0

∂w1

∂x1

(x1, σ) -
∂w1

∂x1

(x1, -σ) -
∂v1

∂x2

(x1, γ- ϵσ) = f1(x1)

and using the result that u1 and w1 are only functions of x1, as well as our result for ∂v1

∂x2
, we get from the first

equation

f0(x1) =
∂v1

∂x2

(x1, 0) = λ
1

2
csch λ γ w1(x1) - e- λ γ u1(x1)+

- λ
1

2
csch λ γ e λ γ u1(x1) -w1(x1)

= λ
1

2
csch λ γ w1(x1) - e- λ γ u1(x1) - e λ γ u1(x1) +w1(x1)

= λ csch λ γ w1(x1) - cosh λ γ u1(x1)

and from the second equation

- f1(x1) =
∂v1

∂x2

(x1, γ) = λ
1

2
csch λ γ w1(x1) - e- λ γ u1(x1) e λ γ +

- λ
1

2
csch λ γ e λ γ u1(x1) -w1(x1) e- λ γ

= λ
1

2
csch λ γ e λ γ w1(x1) - u1(x1) - u1(x1) + e- λ γ w1(x1)

= λ csch λ γ cosh λ γ w1(x1) - u1(x1)

Thus we end up with the homogenised system

w1(x1) - cosh λ γ u1(x1) = λ-1/2 sinh λ γ f0(x1)

u1(x1) - cosh λ γ w1(x1) = λ-1/2 sinh λ γ f1(x1)

with solution

u1(x1) = -λ-1/2coth λ γ f0(x1) + csch λ γ f1(x1) 

w1(x1) = -λ-1/2csch λ γ f0(x1) + coth λ γ f1(x1)

(where coth(x) = 1
tanh(x)

 ).
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3.3. Homogenisation of a “Contrasting Ladder” Periodic Quantum Graph
This is another modification of the “simple” case, this time with a contrast of order O(ϵ-2) between the coeffi-

cients of the “vertical” and “horizontal” path equations. We have  h = γ  and  α = 1 , and our system of equa-

tions becomes:

vn '' (y2) - λvn (y2) = 0 , n ∈ ℤ , y2 ∈ (0, γ) (E1)

ϵ-2 u '' (y1) - λu (y1) = f0(ϵy1) , y1 ∈ \ℤ (E2)

ϵ-2 w '' (y1) - λw (y1) = f1(ϵy1) , y1 ∈ \ℤ (E3)

The continuity conditions at each vertex are the same as before:

u(n) = vn(0) , ∀ n ∈ ℤ (C1)

w(n) = vn(γ) , ∀ n ∈ ℤ (C2)

Now the conditions of the sum of the outgoing first derivatives also reflect the contrast between coefficients:

lim
σ→0

ϵ-2 u ' (n+σ) - ϵ-2 u ' (n-σ) + vn ' (σ) = 0 (D1)

lim
σ→0

ϵ-2 w ' (n+σ) - ϵ-2 w ' (n-σ) - vn ' (γ-σ) = 0 (D2)

We use the same ansatze as in the “simple” case (noting however that unlike in that case, the dependence of v0

on y2 will turn out to be  non-trivial as we shall see):

vn(y2) = v0(x1, y2) + ϵv1(x1, y2) + ϵ2v2(x1, y2) +Oϵ3
x1 = ϵn

u(y1) = u0(x1) + ϵu1(x1, y1) + ϵ2 u2(x1, y1) +Oϵ3
x1 = ϵy1

w(y1) = w0(x1) + ϵw1(x1, y1) + ϵ2 w2(x1, y1) +Oϵ3
x1 = ϵy1

with first derivatives

vn ' (y2) = 
∂v0

∂y2

(x1, y2) + ϵ
∂v1

∂y2

(x1, y2) + ϵ2
∂v2

∂y2

(x1, y2) +Oϵ3
x1 = ϵn

u ' (y1) = ϵ
∂u0

∂x1

(x1) +
∂u1

∂y1

(x1, y1) + ϵ2
∂u1

∂x1

(x1, y1) +
∂u2

∂y1

(x1, y1) +Oϵ3
x1 = ϵy1

w ' (y1) = ϵ
∂w0

∂x1

(x1) +
∂w1

∂y1

(x1, y1) + ϵ2
∂w1

∂x1

(x1, y1) +
∂w2

∂y1

(x1, y1) +Oϵ3
x1 = ϵy1

and second derivatives

vn '' (y2) = 
∂2 v0

∂y2
2
(x1, y2) + ϵ

∂2 v1

∂y2
2
(x1, y2) + ϵ2

∂2 v2

∂y2
2
(x1, y2) +Oϵ3

x1 = ϵn

u '' (y1) = ϵ
∂2 u1

∂y1
2
(x1, y1) + ϵ2

∂2 u0

∂x1
2
(x1) + 2

∂2 u1

∂x1 ∂y1

(x1, y1) +
∂2 u2

∂y1
2
(x1, y1) +Oϵ3

x1 = ϵy1

w '' (y1) = ϵ
∂2 w1

∂y1
2
(x1, y1) + ϵ2

∂2 w0

∂x1
2
(x1) + 2

∂2 w1

∂x1 ∂y1

(x1, y1) +
∂2 w2

∂y1
2
(x1, y1) +Oϵ3

x1 = ϵy1
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We will again assume that functions um, wm (for m = 1,2,...), as well as their first derivatives, are 1-periodic in

y1.

As  before,  we  substitute  the  ansatze  into  equations  (E1)  through  (E3)  and  consider  independently  the  terms

corresponding to each order of ϵ. At order ϵ-1 we get:

∂2 u1

∂y1
2
(x1, y1) = 0 (E2,-1)

∂2 w1

∂y1
2
(x1, y1) = 0 (E3,-1)

At order ϵ0 we get:

∂2 v0

∂y2
2
(x1, y2) - λv0(x1, y2) = 0 (E1,0)

∂2 u0

∂x1
2
(x1) + 2

∂2 u1

∂x1 ∂y1

(x1, y1) +
∂2 u2

∂y1
2
(x1, y1) - λu0(x1) = f0(x1) (E2,0)

∂2 w0

∂x1
2
(x1) + 2

∂2 w1

∂x1 ∂y1

(x1, y1) +
∂2 w2

∂y1
2
(x1, y1) - λw0(x1) = f1(x1) (E3,0)

Doing the same for the condition equations (C1), (C2), (D1), and (D2), with the same considerations for taking

ϵn = x1 and n = 0  as in the “simple” case, we get at order ϵ-1:

lim
σ→0

∂u0

∂x1

(x1) +
∂u1

∂y1

(x1, σ) -
∂u0

∂x1

(x1) -
∂u1

∂y1

(x1, -σ) = 0 (D1,-1)

lim
σ→0

∂w0

∂x1

(x1) +
∂w1

∂y1

(x1, σ) -
∂w0

∂x1

(x1) -
∂w1

∂y1

(x1, -σ) = 0 (D2,-1)

At order ϵ0 we get:

u0(x1) = v0(x1, 0) (C1,0)

w0(x1) = v0(x1, γ) (C2,0)

lim
σ→0

∂u1

∂x1

(x1, σ) +
∂u2

∂y1

(x1, σ) -
∂u1

∂x1

(x1, -σ) -
∂u2

∂y1

(x1, -σ) +
∂v0

∂y2

(x1, σ) = 0 (D1,0)

lim
σ→0

∂w1

∂x1

(x1, σ) +
∂w2

∂y1

(x1, σ) -
∂w1

∂x1

(x1, -σ) -
∂w2

∂y1

(x1, -σ) -
∂v0

∂y2

(x1, γ-σ) = 0 (D2,0)

At order ϵ1 we only need the continuity conditions:

u1(x1, 0) = v1(x1, 0) (C1,1)

w1(x1, 0) = v1(x1, γ) (C2,1)
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Determination of v0

From equations (E1,0), (C1,0), and (C2,0), following the exact same steps as in the “vertically-stretched” case,

we get

v0(x1, y2) =
1

2
csch λ γ w0(x1) - e- λ γ u0(x1) e λ y2 +

+
1

2
csch λ γ e λ γ u0(x1) -w0(x1) e- λ y2

with first partial derivative with respect to y2

∂v0

∂y2

(x1, y2) = λ
1

2
csch λ γ w0(x1) - e- λ γ u0(x1) e λ y2 +

- λ
1

2
csch λ γ e λ γ u0(x1) -w0(x1) e- λ y2

Homogenisation

Using the same logic as in the “simple” case, u1  and w1 are only functions of x1. Hence equations (E2,0) and

(E3,0) become

∂2 u2

∂y1
2
(x1, y1) = f0(x1) -

∂2 u0

∂x1
2
(x1) + λu0(x1)

∂2 w2

∂y1
2
(x1, y1) = f1(x1) -

∂2 w0

∂x1
2
(x1) + λu0(x1)

Integrating these two equations on a representative unit cell with respect to y1 on - 1
2

, 0 ⋃ 0, 1
2
, we have

lim
σ→0

∂u2

∂y1

(x1, -σ) -
∂u2

∂y1

x1, -
1

2
+

∂u2

∂y1

x1,
1

2
-

∂u2

∂y1

(x1, σ)

= 
-1/2

1/2

f0(x1) -
∂2 u0

∂x1
2
(x1) + λu0(x1) ⅆy1 = f0(x1) -

∂2 u0

∂x1
2
(x1) + λu0(x1)

lim
σ→0

∂w2

∂y1

(x1, -σ) -
∂w2

∂y1

x1, -
1

2
+

∂w2

∂y1

x1,
1

2
-

∂w2

∂y1

(x1, σ)

= 
-1/2

1/2

f1(x1) -
∂2 w0

∂x1
2
(x1) + λw0(x1) ⅆy1 = f1(x1) -

∂2 w0

∂x1
2
(x1) + λw0(x1)

Eliminating the terms that cancel out by periodicity, and using equations (D1,0) and (D2,0), we get

lim
σ→0

∂u1

∂x1

(x1, σ) -
∂u1

∂x1

(x1, -σ) +
∂v0

∂y2

(x1, σ) = f0(x1) -
∂2 u0

∂x1
2
(x1) + λu0(x1)

lim
σ→0

∂w1

∂x1

(x1, σ) -
∂w1

∂x1

(x1, -σ) -
∂v0

∂y2

(x1, γ-σ) = f1(x1) -
∂2 w0

∂x1
2
(x1) + λw0(x1)
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and using the result that u1 and w1 are only functions of x1, as well as our result for ∂v0

∂y2
, we get from the first

equation

f0(x1) -
∂2 u0

∂x1
2
(x1) + λu0(x1) =

∂v0

∂y2

(x1, 0)

= λ
1

2
csch λ γ w0(x1) - e- λ γ u0(x1)- λ

1

2
csch λ γ e λ γ u0(x1) -w0(x1)

= λ
1

2
csch λ γ w0(x1) - e- λ γ u0(x1) - e λ γ u0(x1) +w0(x1)

= λ csch λ γ w0(x1) - cosh λ γ u0(x1)

and from the second equation

f1(x1) -
∂2 w0

∂x1
2
(x1) + λw0(x1) = -

∂v0

∂y2

(x1, γ)

= - λ
1

2
csch λ γ w0(x1) - e- λ γ u0(x1) e λ γ +

+ λ
1

2
csch λ γ e λ γ u0(x1) -w0(x1) e- λ γ

= - λ
1

2
csch λ γ e λ γ w0(x1) - u0(x1) - u0(x1) + e- λ γ w0(x1)

= - λ csch λ γ cosh λ γ w0(x1) - u0(x1)

Thus we end up with the homogenised system

∂2u0

∂x1
2 (x1) + -λ- λ coth λ γ u0(x1) + λ csch λ γ w0(x1) = f0(x1)

∂2w0

∂x1
2 (x1) + λ csch λ γ u0(x1) + -λ- λ coth λ γ w0(x1) = f1(x1)

Wave propagation restrictions in the homogenised system

We can analyse if there exist restrictions of wave propagation for specific frequencies on the homogenised

system by looking for gaps in the spectrum of the operator for  λ < 0 . Changing the sign of λ the homogenised

system becomes

∂2u0

∂x1
2 (x1) + λ- λ cot λ γ u0(x1) + λ csc λ γ w0(x1) = f0(x1)

∂2w0

∂x1
2 (x1) + λ csc λ γ u0(x1) + λ- λ cot λ γ w0(x1) = f1(x1)

We can analyse this by looking instead at the problems derived by diagonalizing this system in terms of odd

and even modes,

η1 '' (x1) + β1(λ) η1(x1) = f0(x1) + f1(x1)

η2 '' (x1) + β2(λ) η2(x1) = f0(x1) - f1(x1)

where

η1(x1) = u0(x1) +w0(x1)

η2(x1) = u0(x1) -w0(x1)
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and functions β1(λ) and β2(λ) correspond to the β(λ) function attributed to V. Zhikov [A, I], and are equal to

the eigenvalues of the coefficient matrix of the zero-order part of the homogenised system, i.e.

β1(λ) = λ- λ cot
λ γ

2

β2(λ) = λ+ λ tan
λ γ

2

To have  a  unique  solution  in  H1()  of  the  system for  any  f0, f1 ∈ L2,  we  need   β(λ) < 0 ;  having  both

β1(λ) < 0   and   β2(λ) < 0    on  an  interval  would  be  equivalent  to  λ  being  in  the  resolvent  set  of  the

homogenised system, which would imply a gap in its spectrum.

20 40 60 80 100
λ

-100

-50

50

100

150

200

β(λ)

β1(λ)

β2(λ)

Figure 3.2: β1(λ) and β2(λ) plotted against λ, for γ = 1

The graphs for β1(λ) and β2(λ) present a clear pattern of the vertical asymptotes, with the asymptotes of β1(λ)

at  λ =
(2 n)2 π2

γ2   and the ones for β2(λ) at  λ =
(2 n+1)2 π2

γ2  . Looking at figure 3.2 and noting that modifying the

height parameter γ only has the effect of moving the asymptotes closer together or further apart, which is akin

to only compressing or stretching the horizontal scale, we can see that there do not seem to exist any spectral

gaps. This can be proved by taking  t = λ γ

2
  so that  β1(λ) < 0  and  β2(λ) < 0  become, after simplification:

2 t

γ
- cot(t) < 0 ⇔

2 t

γ
< cot(t)

2 t

γ
+ tan(t) < 0 ⇔

2 t

γ
< - tan(t)

Since the asymptotes of  cot(t)  lie exactly at the zeroes of  - tan(t) , and vice-versa, and both functions are

monotonically decreasing on each interval between their asymptotes, and since t must be greater than 0 there

are no values of t where both inequalities hold.

While the system doesn’t have spectrum gaps,  β1(λ) and β2(λ) both oscillate between positive and negative

values. This implies that for certain intervals of frequencies λ only even or odd modes can propagate, and the

height parameter γ can be used to adjust the location of any one of these intervals.
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4. Homogenisation of Quantum Graphs Exhibiting Periodicity 
in Two Directions

In  this  section  we  will  analyse  the  behaviour  of  our  periodic  operator  on  an  infinite-length,  infinite-height

planar “mesh” quantum graph which presents periodicity in both orthogonal directions when embedded in the

plane (y1, y2) and aligned to its coordinate basis, as illustrated in figure 4.1:

y2

-2 -1 1 20

-2

-1

1

2

y1

Figure 4.1: Close-up of the quantum graph embedded in the plane, displaying the sixteen periodicity cells closest 
to the origin

4.1 Homogenisation of a “Simple Mesh” Periodic Quantum Graph
We define an unknown function u(y1, y2)  in H1()  acting on all  “vertical” paths of the graph at  y1 = m ∈ ℤ

and  all  “horizontal”  paths  at   y2 = n ∈ ℤ  .  Taking  f (ϵ y1, ϵy2)  as  a  known  function  in  L2(),  our  periodic

operator takes the form

ϵ-2 ΔΓ u(y1, y2) - λu(y1, y2) = f (ϵy1, ϵy2) (E1)

where ΔΓ is the Laplacian operator on the graph. Existence and uniqueness of u can be proved for λ > 0 by the

Lax Milgram Theorem in an analogous way to the “ladder” quantum graphs in Section 3.

From the quantum graph continuity condition at each vertex we get the following condition equations:

lim
σ→0

u(m+σ, n) - u(m-σ, n) = 0 , ∀ m, n ∈ ℤ (C1)

lim
σ→0

u(m, n+σ) - u(m, n-σ) = 0 , ∀ m, n ∈ ℤ (C2)

lim
σ→0

u(m+σ, n) - u(m, n-σ) = 0 , ∀ m, n ∈ ℤ (C3)

From  the  quantum  graph  condition  of  the  sum  of  all  outgoing  first  derivatives  being  equal  to  zero  at  each

vertex we get the following condition equation:

lim
σ→0

u ' (m+σ, n) - u ' (m-σ, n) + u ' (m, n+σ) - u ' (m, n-σ) = 0 , ∀ m, n ∈ ℤ (D1)
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Per the method of multiple scales, we assign to u the two-scale ansatz:

u(y1, y2) = u0(x1, x2) + ϵu1(x1, x2, y1, y2) + ϵ2 u2(x1, x2, y1, y2) +Oϵ3
x1 = ϵy1, x2 = ϵy2

The first derivative becomes

u ' (y1, y2) = ϵ(∇x · u0(x1, x2) + ∇y · u1(x1, x2, y1, y2)) +

+ϵ2(∇x · u1(x1, x2, y1, y2) +∇y · u2(x1, x2, y1, y2)) +Oϵ3
x1 = ϵy1, x2 = ϵy2

(where  ∇x = 
d

dx1
, d

dx2
  and  ∇y = 

d

dy1
, d

dy2
 ), and the Laplacian becomes

∇2 u(y1, y2) = ϵ(∇y ·∇y u1(x1, x2, y1, y2)) + ϵ2(∇x ·∇x u0(x1, x2) +

+∇y ·∇x u1(x1, x2, y1, y2) +∇y ·∇y u2(x1, x2, y1, y2)) +Oϵ3
x1 = ϵy1, x2 = ϵy2

We will assume that functions um  (for m = 1,2,...), as well as their first derivatives, are 1-periodic in both y1

and y2.

We substitute the ansatze into equation (E1) and consider independently the terms corresponding to each order

of ϵ. At order ϵ-1 we get:

∇y ·∇y u1(x1, x2, y1, y2) = 0 (E1,-1)

At order ϵ0 we get:

∇x ·∇x u0(x1, x2) +∇y ·∇x u1(x1, x2, y1, y2) +

+∇y ·∇y u2(x1, x2, y1, y2) - λu0(x1, x2) = f (x1, x2)
(E1,0)

We do  the  same  with  the  continuity  and  outgoing  derivatives  condition  equations,  taking   ϵn = x1   and

ϵm = x2  since they can take any value in , and taking  m = 0  and  n = 0  by periodicity on the unit-cell. We

thus have at order ϵ1:

lim
σ→0

u1(x1, x2, σ, 0) - u1(x1, x2, -σ, 0) = 0 (C1,1)

lim
σ→0

u1(x1, x2, 0, σ) - u1(x1, x2, 0, -σ) = 0 (C2,1)

lim
σ→0

u1(x1, x2, σ, 0) - u1(x1, x2, 0, -σ) = 0 (C3,1)

lim
σ→0

∇x · u0(x1, x2) + ∇y u1(x1, x2, σ, 0) -∇x · u0(x1, x2) - ∇y u1(x1, x2, -σ, 0) +

+∇x · u0(x1, x2) + ∇y u1(x1, x2, 0, σ) -∇x · u0(x1, x2) - ∇y u1(x1, x2, 0, -σ) = 0
(D1,1)

For the outgoing derivatives condition equation, we have at order ϵ2:

lim
σ→0

∇x · u1(x1, x2, σ, 0) +∇y · u2(x1, x2, σ, 0) - ∇x · u1(x1, x2, -σ, 0) +

-∇y · u2(x1, x2, -σ, 0) + ∇x · u1(x1, x2, 0, σ) +∇y · u2(x1, x2, 0, σ) +

-∇x · u1(x1, x2, 0, -σ) -∇y · u2(x1, x2, 0, -σ) = 0

(D1,2)
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Determination of u1

From  equation  (E1,-1)  we  know  that  on  the  interval   y1 ∈ -
1
2

, 1
2
    for   y2 = 0  ,  u1  should  have  the

“horizontal” form

u1
(h)(x1, x2, y1) =

αh
-(x1, x2)y1 + βh

-(x1, x2) , - 1
2

≤ y1 < 0

αh
+(x1, x2)y1 + βh

+(x1, x2) , 0 < y1 ≤
1
2

Testing at the limit  y1 = 0  and per equation (C1,1), functions βh
-  and βh

+  must be equal. Using this fact and

periodicity on y1 we have

u1
(h) x1, x2, -

1

2
= u1

(h) x1, x2,
1

2

⇒ -
1

2
αh
-(x1, x2) + βh

-(x1, x2) =
1

2
αh
+(x1, x2) + βh

+(x1, x2)

⇒ -αh
-(x1, x2) = αh

+(x1, x2)

and evaluating the partial derivative with respect to y1 at the same points we have, from equation (D1,1),

∂u1
(h)

∂y1

x1, x2, -
1

2
=

∂u1
(h)

∂y1

x1, x2,
1

2

⇒ αh
-(x1, x2) = αh

+(x1, x2)

Thus  u1  is  independent  of  y1  since   αh
- = αh

+ = 0  .  Using  the  same  argument  for  the  “vertical”  form  on  the

interval  y2 ∈ -
1
2

, 1
2
   for  y1 = 0 ,

u1
(v)(x1, x2, y2) =

αv
-(x1, x2)y1 + βv

-(x1, x2) , - 1
2

≤ y2 < 0

αv
+(x1, x2)y1 + βv

+(x1, x2) , 0 < y2 ≤
1
2

testing at the limit  y2 = 0  and per equation (C2,1), functions βv
-  and βv

+  must be equal, and from periodicity

on y2 and equation (D1,1),   αv
- = αv

+ = 0 . Combining both results we get that u1 must be a function of only x1

and x2.

Homogenisation

From our previous result, equation (E1,0) becomes

-∇y ·∇y u2(x1, x2, y1, y2) = ∇x ·∇x u0(x1, x2) - λu0(x1, x2) - f (x1, x2)

and averaging over (y1, y2) on the unit cell we end up with the homogenised equation:

∇2 u0(x1, x2) - λu0(x1, x2) = f (x1, x2)
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4.2 Homogenisation of a “Contrasting Mesh” Periodic Quantum Graph
We define two families of unknown functions, um(y1) acting on all “horizontal” paths of the graph, and vn(y2)

acting on all  “vertical”  paths  of  the  graph,  both  in  H1()  for  m, n ∈ ℤ.  Similarly  to  the  “contrasting ladder”

case we add a contrast  of order O(ϵ-2)  between the coefficients of the “vertical” and “horizontal” path equa-

tions.  Taking f0(ϵy1, ϵy2) and f1(ϵy1, ϵy2) as known functions in L2(), our periodic operator takes the form:

vn '' (y2) - λvn (y2) = f1(ϵy1, ϵy2) , n ∈ ℤ , y2 ∈ \ℤ (E1)

ϵ-2 um '' (y1) - λum(y1) = f0(ϵ y1, ϵy2) , m ∈ ℤ, y1 ∈ \ℤ (E2)

Existence and uniqueness of um  and vn  can be proved for λ > 0 by the Lax Milgram Theorem in an analogous

way to the “ladder” quantum graphs in Section 3.

The continuity conditions at each vertex simply become:

um(n) = vn(m) , ∀ m, n ∈ ℤ (C1)

The  conditions  of  the  sum  of  the  outgoing  first  derivatives,  reflecting  the  contrast  between  coefficients,

become:

lim
σ→0

ϵ-2 um ' (n+σ) - ϵ-2 um ' (n-σ) + vn ' (m+σ) - vn ' (m-σ) = 0 (D1)

Per the method of multiple scales, we use the following two-scale ansatze:

vn(y2) = v0(x1, x2, y2) + ϵv1(x1, x2, y2) + ϵ2 v2(x1, x2, y2) +Oϵ3
x1 = ϵn, x2 = ϵy2

um(y1) = u0(x1, x2, y1) + ϵu1(x1, x2, y1) + ϵ2 u2(x1, x2, y1) +Oϵ3
x1 = ϵy1, x2 = ϵm

with first derivatives

vn ' (y2) = 
∂v0

∂y2

(x1, x2, y2) + ϵ
∂v0

∂x2

(x1, x2, y2) +
∂v1

∂y2

(x1, x2, y2) +

+ϵ2
∂v1

∂x2

(x1, x2, y2) +
∂v2

∂y2

(x1, x2, y2) +Oϵ3
x1 = ϵn, x2 = ϵy2

um ' (y1) = 
∂u0

∂y1

(x1, x2, y1) + ϵ
∂u0

∂x1

(x1, x2, y1) +
∂u1

∂y1

(x1, x2, y1) +

+ϵ2
∂u1

∂x1

(x1, x2, y1) +
∂u2

∂y1

(x1, x2, y1) +Oϵ3
x1 = ϵy1, x2 = ϵm

and second derivatives

vn '' (y2) = 
∂2 v0

∂y2
2
(x1, x2, y2) + ϵ

∂2 v0

∂x2 ∂y2

(x1, x2, y2) +
∂2 v1

∂y2
2
(x1, x2, y2) +

+ϵ2
∂2 v0

∂x2
2
(x1, x2, y2) +

∂2 v1

∂x2 ∂y2

(x1, x2, y2) +
∂2 v2

∂y2
2
(x1, x2, y2) +Oϵ3

x1 = ϵn, x2 = ϵy2
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um '' (y1) = 
∂2 u0

∂y1
2
(x1, x2, y1) + ϵ

∂2 u0

∂x1 ∂y1

(x1, x2, y1) +
∂2 u1

∂y1
2
(x1, x2, y1) +

+ϵ2
∂2 u0

∂x1
2
(x1, x2, y1) +

∂2 u1

∂x1 ∂y1

(x1, x2, y1) +
∂2 u2

∂y1
2
(x1, x2, y1) +Oϵ3

x1 = ϵy1, x2 = ϵm

We will assume that functions um  (for m = 0,1,...), as well as their first derivatives, are 1-periodic in y1, and

that functions vn (for n = 0,1,...), as well as their first derivatives, are 1-periodic in y2.

We substitute the ansatze into equations (E1) and (E2), and consider independently the terms corresponding to

each order of ϵ. At order ϵ-2 we get:

∂2 u0

∂y1
2
(x1, x2, y1) = 0 (E2,-2)

At order ϵ-1 we get:

∂2 u0

∂x1 ∂y1

(x1, x2, y1) +
∂2 u1

∂y1
2
(x1, x2, y1) = 0 (E2,-1)

At order ϵ0 we get:

∂2 v0

∂y2
2
(x1, x2, y2) - λv0(x1, x2, y2) = f1(x1, x2) (E1,0)

∂2 u0

∂x1
2
(x1, x2, y1) +

∂2 u1

∂x1 ∂y1

(x1, x2, y1) +
∂2 u2

∂y1
2
(x1, x2, y1) - λu0(x1, x2, y1) = f0(x1, x2) (E2,0)

We do the same with the continuity and outgoing derivatives condition equations, with the same considera-

tions for taking  ϵn = x1 ,  ϵm = x2 , m = 0 , and  n = 0   as in the “simple” case. We thus have at order ϵ-2:

lim
σ→0

∂u0

∂y1

(x1, x2, σ) -
∂u0

∂y1

(x1, x2, -σ) = 0 (D1,-2)

At order ϵ-1 we get:

lim
σ→0

∂u0

∂x1

(x1, x2, σ) +
∂u1

∂y1

(x1, x2, σ) -
∂u0

∂x1

(x1, x2, -σ)
∂u1

∂y1

(x1, x2, -σ) = 0 (D1,-1)

At order ϵ0 we get:

u0(x1, x2, 0) = v0(x1, x2, 0) (C1,0)

lim
σ→0

∂u1

∂x1

(x1, x2, σ) +
∂u2

∂y1

(x1, x2, σ) -
∂u1

∂x1

(x1, x2, -σ) +

-
∂u2

∂y1

(x1, x2, -σ) +
∂v0

∂y2

(x1, x2, σ) -
∂v0

∂y2

(x1, x2, -σ) = 0

(D1,0)

Determination of v0

From equation (E1,0), taking λ > 0 we get

v0(x1, x2, y2) = -
1

λ
f1(x1, x2) + α0(x1, x2) e λ y2 + α1(x1, x2) e- λ y2
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for unknown functions α0 and α1. From the periodicity condition on the unit cell of vn  with respect to y2 we

have

v0 x1, x2, -
1

2
= v0 x1, x2,

1

2

⇒ -
1

λ
f1(x1, x2) + α0(x1, x2) e-

1

2
λ + α1(x1, x2) e

1

2
λ =

-
1

λ
f1(x1, x2) + α0(x1, x2) e

1

2
λ + α1(x1, x2) e-

1

2
λ

⇒ α1(x1, x2) = α0(x1, x2)

and from the  periodicity condition on the unit cell of vn ' with respect to y2 we have

∂v0

∂y2

x1, x2, -
1

2
=

∂v0

∂y2

x1, x2,
1

2

⇒ -
1

λ
f1(x1, x2) + λ α0(x1, x2) e-

1

2
λ - λ α1(x1, x2) e

1

2
λ =

-
1

λ
f1(x1, x2) + λ α0(x1, x2) e

1

2
λ - λ α1(x1, x2) e-

1

2
λ

⇒ α1(x1, x2) = - α0(x1, x2)

which together imply  α0 = α1 = 0 , and hence

v0(x1, x2, y2) = -
1

λ
f1(x1, x2)

Determination of u0

From equation (E2,-2), and using the same logic as in the “simple ladder” case from section 3.1, we find that

u0 is independent of y1. Hence equation (E2,-1) becomes

∂2 u1

∂y1
2
(x1, x2, y1) = 0

and using the same logic as for u0, we find that u1 is also independent of y1. Hence equation (E2,0) becomes:

∂2 u2

∂y1
2
(x1, x2, y1) = f0(x1, x2) -

∂2 u0

∂x1
2
(x1, x2) + λu0(x1, x2)

Homogenisation

Integrating this last equation on a representative unit cell with respect to y1 on - 1
2

, 0 ⋃ 0, 1
2
, we have

lim
σ→0

∂u2

∂y1

(x1, x2, -σ) -
∂u2

∂y1

x1, x2, -
1

2
+

∂u2

∂y1

x1, x2,
1

2
-

∂u2

∂y1

(x1, x2, σ)

= 
-1/2

1/2

f0(x1, x2) -
∂2 u0

∂x1
2
(x1, x2) + λu0(x1, x2) ⅆy1 = f0(x1, x2) -

∂2 u0

∂x1
2
(x1, x2) + λu0(x1, x2)
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Eliminating the terms that cancel out by periodicity, and using equation (D1,0) and our previous results for v0

and u1, we get

f0(x1, x2) -
∂2 u0

∂x1
2
(x1, x2) + λu0(x1, x2) = 0

⇒
∂2 u0

∂x1
2
(x1, x2) - λu0(x1, x2) = f0(x1, x2)

Further constraints

Plugging our results into continuity condition equation C(1,0) we get

u0(x1, x2) = -
1

λ
f1(x1, x2)

which establishes the following condition required for the system to be consistent:

∂2 f1

∂x1
2
(x1, x2) - λ f1(x1, x2) = -λ f0(x1, x2)
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